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ABSTRACT 
The incorporation of quantitative precipitation forecasting has been recognised to play a 
key role in flash flood warning systems, allowing for an extension of the lead-time that 
enables a more timely implementation of the control measures. This study compares the 
performances of time-series methods for determining short-term rainfall forecasting in 
absence of meteorological information other than some historical rainfall data over the 
basin and the measurement of the current rainfall, so that the implementation of 
numerical weather prediction models or radar and satellite images extrapolation 
methods is not feasible. The examined rainfall time-series modeling approaches include 
linear stochastic models, artificial neural network models, and nearest-neighbour 
methods. The aim of the analysis is a comparison of the performances attainable by 
integrating the above methods in a runoff forecasting system applied to a real world 
case study, referred to the Sieve River basin on the Apennine Mountains in Italy. The 
time of concentration of the basin is around 10 hours and the drainage area is 830 km2. 
The issued rainfall forecasts are routed through a conceptual, lumped, rainfall-runoff 
model and the efficiency of the forecasted river discharges are compared with those 
obtained with empirical approaches often adopted in the operational practice relying on 
the prediction of future rainfall based on heuristic methods. 



1 INTRODUCTION 

The importance of the incorporation of Quantitative Precipitation 
Forecasting in flood warning systems, thus allowing for longer lead-time and 
improved reliability of the warnings, is particularly strong for rapidly evolving 
floods, such as those developing in small and medium-sized basin typical of 
Mediterranean regions. 

It is widely recognised that obtaining a reliable QPF is not an easy task, and 
great uncertainties still affect the performances of both stochastic and 
deterministic rainfall prediction models. This study compares the performances 
of time-series analysis techniques for determining short-term rainfall 
forecasting. Even if the predictive ability of these methods is limited because of 
the low persistence in time usually characterising rainfall time series, the 
possibility of implementing such methods in quick times and with moderate 
data availability makes their application attractive in the context of real-time 
flood forecasting.  

The following time series methods have been considered: (1) linear 
stochastic AutoRegressive Moving Average (ARMA) and AutoRegressive 
Integrated Moving Average (ARIMA) models, which express the future rainfall 
as a linear function of past data. The approach is thus linear, model-driven and 
parametric, i.e. it first requires identification of the type of relationship among 
the variables (model identification) and then the estimation of model 
parameters; (2) Artificial Neural Network architectures (ANN), belonging to the 
non-linear, data-driven, approaches: the resulting model depends on the 
available data to be “learned”, without any a priori hypothesis about the kind of 
relationship, which is allowed to be complex and non-linear; (3) K-Nearest 
Neighbours Method (K-NN), a non-parametric regression methodology, not 
implying any structured interaction but exploiting the closeness 
(“neighbourhood”) between the most recent observations and K “similar” sets 
of observations chosen in an adequately large training sample. 

The aim of our analysis is a comparison of the above methods from an 
operational point of view, considering an integrated rainfall and runoff 
forecasting system operated on a real world case study. The issued rainfall 
forecasts are routed through a lumped conceptual rainfall-runoff transformation 
model and the performances of the flow forecast are analysed and compared.  

Given the predominance of the presence of null or very low values in the 
rainfall series and our interest in flood forecasting, we limited our analysis, both 
in the calibration and validation phase, to the rainfall values belonging to storm 
events, so to identify the temporal pattern characterising the storms, whose 
persistency properties are different from those of dry or low rainfall sequences. 



2 CASE STUDY, DATA SETS AND CALIBRATION APPROACHES 

The case study herein considered is referred to the Sieve River basin, a first 
tributary of the Arno River in Central Italy. The basin has a drainage area of 
830 km2 and the time of concentration is about 10 hours. The data set consists of 
five years of hourly discharges at the closure section of Fornacina and hourly 
precipitation in 12 raingauges, spatially averaged over the watershed. In the 
observation period a total of 84 storm events were identified and the 
corresponding precipitation and river discharge observations were collected. 

Two alternative approaches were followed for estimating the parameters of 
the models: split-sample calibration and adaptive calibration. In the split-sample 
calibration the storm events were divided in two sets: a calibration (or training) 
set and a validation set, to test the performances of the calibrated model over 
out-of-sample occurrences. In the adaptive calibration no database of past 
significant observed events was supposed available for the calibration, but only 
the most recently observed values, so that the calibration of the model is 
implemented on-line, as soon as new observations become available. For both 
calibration approaches, in correspondence of each hourly time step belonging to 
the validation set, a rainfall forecast was issued for the subsequent 1 to 6 hours, 
using the most recent observations as inputs. The resulting forecasted rainfall 
values were processed as inputs to the rainfall-runoff transformation model thus 
providing the discharge forecast.  

3 LINEAR STOCHASTIC MODELS (ARMA AND ARIMA) 

Most of the time series techniques traditionally used for modeling water 
resources series fall within the framework of the AutoRegressive Moving 
Average class of linear stochastic processes. They are usually denoted as 
ARMA(p,q) models, where p and q, are, respectively, the autoregressive and 
moving average orders (Box and Jenkins, 1976; Brockwell and Davis, 1987). 
They describe each observation of the time series as a weighted sum of p 
previous data and the current and q previous values of a white noise process: 

( ) ( ) ( ) xqtqtttxptpxtxtt xxxx µηθηθηθηµφµφµφ ++++++−++−+−= −−−−−− ...... 22112211    (1) 
where xt, xt-1,… is the investigated time series; ηt  is a white noise, i.e. a not-
correlated, zero-mean random variable which is also not correlated with the past 
values of xt; φ1 , ... , φp and θ

 1 , ... , θ q are respectively the autoregressive and 
moving average parameters; µx is the mean of the time series.  

The parameters of the models were estimated with an approximation in the 
spectral domain of the Gaussian maximum likelihood function, which was first 
proposed by Whittle (1953) for short-memory models. 

The use of low-order ARMA processes to model short-term precipitation 
values was considered, following the modeling framework proposed by Brath et 



al. (1988) and Burlando et al (1993). The application of ARMA models requires 
the data to be stationary and this is often not the case for hourly rainfall 
observations, whose statistical properties may vary with the season. Nonetheless 
the limited number of rainfall events in the observation period prevented us, in 
the split-sample calibration, from grouping the events in monthly periods, as it 
is usually done in hydrology to circumvent non-stationarity. In the adaptive 
calibration application (corresponding to the “continuous” approach 
implemented by Burlando et al., 1993) non-stationarity is accounted for by 
allowing the model parameters to vary along time since the calibration is 
performed on the current event progress solely. Furthermore, we applied, in 
both split-sample and adaptive calibration approaches, the extension of ARMA 
models which permits the handling of non-stationary processes, denoted as 
AutoRegressive Integrated Moving Average (ARIMA) models, based on the 
differencing of the time series (Brockwell and Davis, 1987).  

We preferred not to perform any preliminary transformation of the data in 
order to make them as close to Gaussian as possible. In fact, Gaussianity of the 
data is not required for the forecast application of ARMA and ARIMA models, 
since they provide the best linear prediction even in the non-Gaussian case 
(Brockwell and Davis, 1987). 

The selection of the model autoregressive and moving average orders, p and 
q, was driven by some results available in literature. Obeysekera et al. (1987) 
determined an equivalence between the correlation structure of the ARMA(1,1) 
and ARMA(2,2) models and some widely known and satisfactorily used rainfall 
point process models, like the Poisson Rectangular Pulse, the Neyman-Scott 
White Noise models (Rodriguez-Iturbe et al, 1984) and the Neyman-Scott 
Rectangular Pulses model (Rodriguez-Iturbe, 1986). In both the split-sample 
and adaptive calibration we tested all the ARMA models with a total number of 
parameters less or equal to 6, and the ARIMA models corresponding to orders p 
and q ranging from 0 to 2 and order of differentiation d equal to 1 and 2. 

In the adaptive calibration approach, the optimal number w of observations 
xt immediately preceding the forecast time to be used for estimating the model 
parameters was chosen on the basis of the results of a previous study (Brath et 
al. 1998). The results showed that more than 3 days of hourly observations were 
needed for lead-times longer than 4 hours. Thus, we set the number of past 
rainfall hourly observations to be used in the adaptive calibration equal to 100. 

4 ARTIFICIAL NEURAL NETWORKS (ANN) 

Artificial Neural Networks have been widely studied and applied to a variety 
of problems, including hydro-meteorological variables simulation and 
forecasting. Several studies have been dedicated to the prediction of river flows 
both with and without exogenous inputs, that is with the only use of past flow 
observations or based on the knowledge of previous rainfall depths (and other 



meteorological variables) along with past observed flows (e.g. Karunanithi et al, 
1994; Hsu et al., 1995; Shamseldin, 1997). 

The use of ANN for rainfall forecasting has not been fully explored, yet. A 
pioneer work is the study by French et al. (1992), who applied a neural network 
to forecast 1 hour ahead, two-dimensional rainfall fields synthetically generated 
on a regular grid. Kuligowski and Barros (1998) generated QPF of point 
precipitation cumulated over the following 6-hours period using as inputs the 
antecedent rainfall depths measured in adjacent gauges and the radiosonde-
based wind direction.  

Neural networks emulate the human brain computational capacity by 
distributing computations to relatively simple processing units called neurons. 
The neurons are grouped in layers and adjacent layers are interconnected 
through synaptic links (weights). Three different layer types can be 
distinguished: input layer, connecting the input information, output layer, 
producing the final output, and one or more hidden layers, acting as 
intermediate computational layers between input and output. The input values 
are multiplied by the first interconnection weights, all such products are 
summed with a neuron-specific parameter, called bias (used to scale the sum of 
products into a useful range), and become inputs to the hidden layer nodes, 
which apply a non-linear activation function (usually a sigmoidal unit) to the 
above sum producing an hidden node output. These outputs are processed in the 
same way through the subsequent hidden layers (if existing) or through the 
output layer, generating the network output. 

Neural networks are trained with a set of observed input and output (called 
target to be distinguished from the network final output) data pairs, the training 
data set, which is processed repeatedly, changing the values of the parameters 
until they converge to values such that each input vector produces output values 
as close as possible to the desired target vectors. The applied training technique 
is the popular and extensively tested BackPropagation (BP) training algorithm, 
a supervised learning method in which the output errors (differences between 
the network output and the target) is fed back trough the network, and the 
weights are gradually adjusted in the steepest gradient descent direction in the 
basic algorithm.  

It has been proved that only one layer of hidden units «suffices to 
approximate any function with finitely many discontinuities to arbitrary 
precision», provided the activation functions of the hidden units are non-linear 
(the «Universal Approximation Theorem», see Hornik et al., 1989). Regarding 
the optimal number of nodes in the hidden layer, an ANN may suffer from 
either underfitting or overfitting. A network that is not sufficiently complex can 
fail to fully detect a complicated input-output relationship, leading to 
underfitting. A network with too large a number of hidden units will probably 
fit exactly the training set, but it may learn spurious relationships peculiar to the 
training data, becoming lacking in generalisation capability (overfitting).  



Among the tested network architectures (changing the type of allowed 
connections between nodes) and variants to the basic BP algorithm, a classical 
multilayer feedforward network (see Fig.1) trained with the Levenberg-
Marquardt algorithm (an optimisation method approximating a second order 
training speed), proved to be the best performing, quickest trained and less 
easily trapped in local minima.  
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Figure 1: Feed-forward direct multistep network. Pt is the precipitation process; t is the 

forecast instant, h
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ijw  are the connection weights towards the hidden and output 
layers and bj are the nodes biases. 

 
The most crucial disadvantage of ANN models is that the optimal network 

architecture is highly problem-dependent and no established methodology exists 
to deal with the neural network modelling problem. The complexity of the 
model, that is the number of input and hidden nodes, has therefore been 
determined with a trial-and-error approach. 

In the split-sample application, networks with a number of input nodes 
ranging from 2 to 24 were tested. For each input layer dimension the number of 
hidden nodes was progressively increased from 2 to 8 and each time a 
deterioration of the forecasting performance on the validation set, indicating 
overfitting, was shown for very moderate dimensions of the hidden layer. In the 
adaptive calibration more parsimonious networks (from 2 to 4 nodes in each 
layer) were investigated, given the modest forecasting performance 
improvement allowed by increasing complexity, as highlighted by the split-
sample calibration. 

5 K-NEAREST-NEIGHBOUR METHOD (K-NN) 

The K-Nearest-Neighbours method has its origins as a non-parametric 
statistical pattern recognition procedure. Yakowitz (1987) and Karlsson 
(Karlsson and Yakowitz, 1987a,b) did considerable work in extending the K-
NN method to time series and forecasting problems, obtaining satisfactorily 



results and constructing a robust theoretical base for the K-NN method. The 
intuitiveness of the approach and the powerful theoretical basis have made the 
method attractive to forecasters, and the method found successful applications 
in hydrology (e.g. Galeati, 1990; Kember and Flower, 1993; Todini, 1999). 

For each forecast instant t, let xd(t) = (xt-d+1,…, xt) be a feature vector of past 
records. The method assumes that the probability distribution of the random 
variable conditioned on the entire past is the same of the random variable 
conditioned on the d past observations only (xt+1 / xd(t)). 

It was proved that the K-NN forecaster is asymptotically optimal among all 
the forecasters defined on the feature vector xd(t). That is, under fairly general 
circumstances, convergence to the optimal forecaster is assured as the historical 
data set increases (Karlsson and Yakowitz, 1987b). Optimality is preserved for 
any function relating past and future values, and also when the forecasting error 
depends on past values. On the contrary, conventional methods, such as ARMA 
or Kalman filters, are optimal only if the function is linear and the error is white 
noise (Galeati, 1990). 

To estimate 1ˆ +tx  the K-NN method requires to impose a metric || ⋅ ||, usually 
the Euclidean norm, on the feature vector xd(t) and to find the set of K past 
nearest neighbours of xd(t), i.e. the K d-dimensional vectors of past 
observations: xd(tj), j = 1,…., K, which minimise ||xd(t)- xd(tj)||. 

The forecast is obtained by averaging the temporal evolution of the nearest 
neighbours, assumed to be similar to the evolution of the current situation: 
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The nature of the Nearest-Neighbour method makes it not suitable for an 
adaptive calibration, because the approach is based on the availability of an 
extended database and it has no extrapolation ability when presented with an 
unfamiliar input vector. Therefore, only the split-sample calibration was 
performed. A trial-and-error test was implemented for a number of nearest 
neighbours, K, ranging from 5 to 100 and a dimension of the feature vector, d 
(corresponding to the number of past rainfall data considered representative for 
the forecast), ranging from 2 to 12. 

As equation (2) indicates, in no case a value higher than the maximum 
historical rainfall depth can be predicted. This may be a strong limitation in 
extreme events forecasting. To circumvent this deficiency the method was 
applied to forecast:  
(a) the change in value, that is the difference between the predicted and the last 
observed value xt instead of the forecasting the value itself: 
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(b) the differenced rainfall depths time series: 
txxx ttt ∀−=′ − ,1 .                  (4) 

These alternative methods, although promising because allowing to forecast 
values higher than the historically observed, failed to bring any substantial 
improvement in the performances of our forecasts in comparison with the 
standard nearest neighbour approach. 

6 ANALYSIS OF RAINFALL FORECASTING RESULTS 

For each one of the considered time series methodologies (ARMA models, 
ANN and K-NN method), the performances of all the forecasting schemes 
tested in the trial-and-error tests were classified according to the mean of the 
correlation coefficient over all the 6 steps ahead for which the forecasts were 
issued. The correlation coefficient is given by the covariance of forecasts and 
observations divided by the product of the square root of the respective 
variances. It ranges from –1 to 1, higher values indicating better agreement. 

All the ARMA models tested in the split-sample calibration provided 
analogous results, whereas the performances of ARIMA models were 
sometimes not satisfactory. The trends of the correlation coefficients of the 
ARMA and ARIMA model adaptively calibrated were all comparable: the 
performance was good for lead-time of 1 hour, but there was a strong 
deterioration for longer lead-times. 

When calibrated with the split-sample approach, the ANN performance 
considering all the lead-times improves as the number of input nodes increases, 
with modest additional improvement for more than 15 nodes. For a given 
number of input nodes, the dimension of the hidden layer providing the best 
results is low, between 2 and 6 hidden nodes. The ANN adaptive calibration 
proved to be not reliable for short lead-times but it was satisfactorily stable for 
lead-times longer than three hours, provided that the dimensions of the layers 
are neither too small nor too large (the best performing architecture has 3 input 
and 3 hidden nodes). 

As far as the Nearest-Neighbour method is concerned, the performance 
improves with increasing number of nearest neighbours, K, while small values 
(from 2 to 4) for the feature vector dimension, d, seem the most appropriate. 

Figure 2 presents the correlation coefficients of the best performing among 
all the investigated methods. 

The ANN corresponding to the split-sample obtains the overall best results 
for lead-times longer than 2 hours, even if this kind of structure slightly 
penalises the one-hour ahead forecast. Considering all the lead-times, this 
methodology provides the most satisfactory performance among all the 
considered approaches. Thus, neural networks seem to be the best performing 
time-series method for rainfall forecasting among those herein considered, in 



reference to the Sieve River case study. In addition, almost all the 
computational effort for the implementation of the ANN split-sample 
application is spent in the training phase, while the issue of the forecasts with 
the trained network is practically instantaneous, thus making this approach very 
appealing in a real-time forecasting framework. 
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Figure 2: Correlation coefficients of the rainfall forecasting procedures: ARMA(2,2) 
models with split-sample and adaptive calibration; best ANN with split-sample and 

adaptive calibration; best performing Nearest-Neighbour implementation. 

7 RAINFALL-RUNOFF TRANSFORMATION 

7.1 Hydrologic model description 

The deterministic model used for simulating the rainfall-runoff 
transformation is a conceptual continuous simulation model called ADM 
(Franchini, 1996), which is based on the concept of probability distributed soil 
moisture storage capacity. The model is divided into two main blocks: the first 
represents the water balance at soil level and is characterised by 7 parameters, 
while the second represents the transfer of runoff production at the basin outlet 
and involves 4 parameters. The soil, in turn, is divided into two zones: the upper 
zone produces surface and subsurface runoff, while the lower zone produces 
base runoff. The transfer of these components to the outlet section takes place in 
two distinct stages: the first representing the flow along the hillslopes towards 
the channel network, while the second the flow along the channel network 
towards the basin outlet. The calibration of the conceptual model was 
performed with a global optimisation algorithm, the SCE-UA proposed by 
(Duan et al, 1992). 

7.2 Standards of reference: heuristic rainfall predictive approaches 
In order to evaluate the performances of the analysed time series forecasting 

methods when used as inputs in the rainfall-runoff transformation model, the 



results in terms of obtained discharges will be compared with some predictive 
benchmarks, or standards of reference, consisting in rainfall forecasting 
approaches of purely heuristic nature.  

The probably most widespread approach when modelling rainfall-runoff 
transformation in real-time is to assume that the future rainfall will be null (null 
rainfall approach). It is an optimistic hypothesis, assuming that the forecast is 
issued at the end of the event while, especially in basins with short response 
time, forecasts are needed earlier in the storm progress.  

A second term of comparison, widely used in forecasting theory, is the 
persistent method, which equals the future rainfall intensity, over all the 
investigated lead-times, to the last measured value, 

Lxx tLt ∀=+ ,ˆ .                   (4) 
The last investigated heuristic approach, denoted as the modified persistent 

method, consists in extrapolating future values setting the intensity for each 
given lead-time L equal to the mean intensity measured over the last L 
observations, that is, 
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7.3 Analysis of flow forecasting performances 
The improvement in the discharge forecasts attainable using the QPF 

provided by the different rainfall predictive models was evaluated computing 
the correspondent coefficients of efficiency, widely recognised as one of the 
most suitable goodness-of-fit measures for runoff. 

For the analysis of discharge performances, the discharge series chosen as a 
reference was not the series of observed discharges, but the hourly discharges 
simulated by the conceptual model when using as inputs the observed 
precipitation (“true” discharges). This scenario was considered in order to be 
able to evaluate the improvement retrievable by the rainfall forecasting alone, 
independently of the effects of the simulation errors induced by possible 
inadequacies of the hydrologic model. Accordingly, the coefficient of efficiency 
is given by: 
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where tQ̂  is the discharge at time t forecasted with a given lead-time, tQ  is the 
value of the corresponding “true” discharge and Q  is the mean of the whole 
series tQ . 

Figure 3 shows the performances, in terms of efficiency coefficient, of the 
coupled rainfall-runoff forecasting schemes obtained with all the considered 



rainfall forecasting procedures. 
It may be observed that the rainfall-runoff transformation tends to level out 

all the rainfall forecasts corresponding to very short lead-times. As a 
consequence the good performance of ARMA and ARIMA models with 
adaptive calibration for lead-time of one hour becomes unnoticeable. The ANN 
adaptive calibration architectures provide by far the worst results, and this is not 
surprising, considering the limits of ANN when trained on small data sets. As it 
was expected, the null rainfall hypothesis proves to be not realistic, since it may 
strongly underestimate the rainfall volumes, whereas the persistent methods 
(both in the traditional formulation and modified) provide an improvement with 
respect to the null rainfall approach. 
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Figure 3: Efficiency coefficients of the river flows corresponding to the rainfall 
forecasting procedures: ARMA(2,2) models with split-sample and adaptive calibration; 

best ANN with split-sample and adaptive calibration, best Nearest-Neighbour 
implementation; null rainfall, persistent and persistent modified methods. 

 
Overall the split-sample calibration techniques seem to be preferable with 

respect to the adaptive calibrations. This is probably due to the “experience” 
they learned from past samples, which allows them to better reproduce the 
rainfall evolution mechanism for longer lead-times, and the flattening caused by 
the hydrologic transformation gives more weight to the accuracy of the rainfall 
forecasts corresponding to longer time horizons. On the other hand the adaptive 
calibration procedures yielded better results for lead-times of one and two 
hours. 

The split-sample calibrated Artificial Neural Networks produced the highest 



efficiency values. Therefore, the coupled rainfall-runoff forecasting comparison 
confirms, with regard to our case study, the superiority of ANN already shown 
in the analysis of the performances of rainfall forecasts. 

8 CONCLUSIONS 

The study indicates that the considered time-series analysis techniques 
provide an improvement in the flood forecasting accuracy with respect to the 
use of intuitive, heuristic rainfall prediction approaches. The results show that 
the use of time series analysis techniques for precipitation forecasting may 
allow an extension of the lead-time up to which a reliable flood forecast may be 
issued, providing a quick prediction based on past values solely and directly in 
the format required by the rainfall-runoff transformation model. On the other 
hand strong limitations to a time-series analysis approach are due to the lack of 
other meteorological information needed for a reliable prediction. It follows that 
a more substantial improvement may be pursed through the coupling of time 
series techniques with Numerical Weather Prediction models, thus providing a 
physically-based forecasting framework at the temporal and spatial scales 
required by hydrologic models 
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